Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Heliyon ; 10(3): e25531, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38333815

RESUMO

Snakebite envenoming (SBE) is a global public health concern, primarily due to the lack of effective antivenom for treating snakebites inflicted by medically significant venomous snakes prevalent across various geographic locations. The rising demand for safe, cost-effective, and potent snakebite treatments highlights the urgent need to develop alternative therapeutics targeting relevant toxins. This development could provide promising discoveries to create novel recombinant solutions, leveraging human monoclonal antibodies, synthetic peptides and nanobodies. Such technologies as recombinant DNA, peptide and epitope mapping phage display etc) have the potential to exceed the traditional use of equine polyclonal antibodies, which have long been used in antivenom production. Recombinant antivenom can be engineered to target certain toxins that play a critical role in snakebite pathology. This approach has the potential to produce antivenom with improved efficacy and safety profiles. However, there are limitations and challenges associated with these emerging technologies. Therefore, identifying the limitations is critical for overcoming the associated challenges and optimizing the development of recombinant antivenoms. This review is aimed at presenting a thorough overview of diverse technologies used in the development of recombinant antivenom, emphasizing their limitations and offering insights into prospects for advancing recombinant antivenoms.

2.
Eur J Clin Nutr ; 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424158

RESUMO

Iron deficiency is a recognized global health concern, particularly impactful during pregnancy where the mother serves as the primary source of iron for the developing fetus. Adequate maternal iron levels are crucial for fetal growth and cognitive development. This review investigates the correlation between maternal iron deficiency and cognitive impairment and anemia in offspring, considering age and gender differentials. PubMed, ScienceDirect, and Google Scholar databases were queried using keywords "maternal," "iron," "gender/sex," and "cognition." The review included studies on human and animal subjects where maternal iron deficiency was the exposure and offspring cognitive function and anemia were outcomes. Out of 1139 articles screened, fourteen met inclusion criteria. Twelve studies highlighted cognitive deficits in offspring of iron-deficient mothers, with females generally exhibiting milder impairment compared to males. Additionally, two studies noted increased anemia prevalence in offspring of iron-deficient mothers, particularly affecting males and younger individuals. The findings suggest that male offspring are at higher risk of both anemia and cognitive dysfunction during youth, while females face increased risks in adulthood. Thus, maternal iron deficiency elevates the likelihood of anemia and cognitive impairments in offspring, underscoring the importance of addressing maternal iron status for optimal child health.

3.
Curr Drug Targets ; 24(11): 919-928, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37534791

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is associated with a high mortality rate due to early recurrence and its metastasis features. To this day, effective treatment options for metastatic HCC remain a major challenge to patient treatment. Flavokawain B (FKB) is a naturally occurring chalcone molecule capable of providing effective therapy against this life-threatening disease. OBJECTIVE: This study investigated the anti-metastatic effects of FKB on the growth and development of metastatic HCC. METHODS: HepG2 cells were used in this study and a neutral red assay was performed to determine the IC50 value of FKB. Cell scratch and exclusion zone assays were performed to assess the rate of cell migration and invasion. Relative mRNA levels of UCK2, STAT3, VEGF and HIF-1α genes were quantified using RT-qPCR. RESULTS: FKB inhibited the proliferation of HepG2 cells at an IC50 value of 28 µM after 72 h of incubation. Its cytotoxic effect was confirmed to induce apoptosis through the phase-contrast inverted microscope. Cell migration and invasion were significantly inhibited at 7, 14, and 28 µM of FKB as compared to untreated cells. The inhibition in the cell migration significantly increased with the increasing concentrations of the bioactive compound. The relative expression levels of the UCK2 gene and its downstream genes, STAT3, VEGF and HIF-1α, were significantly downregulated after 72 h exposure to FKB treatment. CONCLUSION: Our data suggest that FKB inhibited HepG2 proliferation and further suppressed its metastasis partly by regulating the STAT3/Hif-1α/VEGF signalling pathway. FKB could be a potential alternative and viable strategy against HCC.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Fator A de Crescimento do Endotélio Vascular/genética , Neoplasias Hepáticas/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Proliferação de Células , Linhagem Celular Tumoral , Uridina Quinase , Fator de Transcrição STAT3/farmacologia
4.
J Trace Elem Med Biol ; 78: 127203, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37201368

RESUMO

Iron deficiency is a common micronutrient deficiency associated with metabolic changes in the levels of iron regulatory proteins, hepcidin and ferroportin. Studies have associated dysregulation of iron homeostasis to other secondary and life-threatening diseases including anaemia, neurodegeneration and metabolic diseases. Iron deficiency plays a critical role in epigenetic regulation by affecting the Fe2+/α-ketoglutarate-dependent demethylating enzymes, Ten Eleven Translocase 1-3 (TET 1-3) and Jumonji-C (JmjC) histone demethylase, which are involved in epigenetic erasure of the methylation marks on both DNA and histone tails, respectively. In this review, studies involving epigenetic effects of iron deficiency associated with dysregulation of TET 1-3 and JmjC histone demethylase enzyme activities on hepcidin/ferroportin axis are discussed.


Assuntos
Hepcidinas , Deficiências de Ferro , Humanos , Hepcidinas/genética , Hepcidinas/metabolismo , Epigênese Genética/genética , Histona Desmetilases/metabolismo , Ferro/metabolismo , Homeostase/genética
5.
In Silico Pharmacol ; 11(1): 10, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37073308

RESUMO

Prostate cancer is a leading cause of morbidity and mortality among men globally. In this study, we employed an in silico approach to predict the possible mechanisms of action of selected novel compounds reported against prostate cancer epigenetic targets and their derivatives, exhausting through ADMET profiling, drug-likeness, and molecular docking analyses. The selected compounds: sulforaphane, silibinin, 3, 3'-diindolylmethane (DIM), and genistein largely conformed to ADMET and drug-likeness rules including Lipinski's. Docking studies revealed strong binding energy of sulforaphane with HDAC6 (- 4.2 kcal/ mol), DIM versus HDAC2 (- 5.2 kcal/mol), genistein versus HDAC6 (- 4.1 kcal/mol), and silibinin against HDAC1 (- 7.0 kcal/mol) coupled with improved binding affinities and biochemical stabilities after derivatization. Findings from this study may provide insight into the potential epigenetic reprogramming mechanisms of these compounds against prostate cancer and could pave the way toward more success in prostate cancer phytotherapy.

6.
Molecules ; 28(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36677591

RESUMO

Consumption of white rice (WR) has been shown to predispose individuals to metabolic disorders. However, brown rice (BR), which is relatively richer in bioactive compounds, possesses anti-glycaemic and antioxidant effects. In this study, fifteen cultivars of paddy rice that are predominantly consumed in North West Nigeria were analysed for their nutritional composition, bioactive contents and effects on metabolic outcomes in a fruit fly model. Gene expression analyses were conducted on the whole fly, targeting dPEPCK, dIRS, and dACC. The protein, carbohydrate, and fibre contents and bioactives of all BR cultivars were significantly different (p < 0.05) from the WR cultivars. Moreover, it was demonstrated that the glucose and trehalose levels were significantly higher (p < 0.05), while glycogen was significantly lower (p < 0.05) in the WR groups compared to the BR groups. Similarly, the expression of dACC and dPEPCK was upregulated, while that of dIRS was downregulated in the WR groups compared to the BR groups. Sex differences (p < 0.05) were observed in the WR groups in relation to the nutrigenomic effects. Our findings confirm metabolic perturbations in fruit flies following consumption of WR via distortion of insulin signalling and activation of glycogenolysis and gluconeogenesis. BR prevented these metabolic changes possibly due to its richer nutritional composition.


Assuntos
Doenças Metabólicas , Oryza , Glicemia/metabolismo , Insulina/metabolismo , Nutrigenômica , Oryza/química , Drosophila , Animais
7.
Nat Prod Res ; 37(17): 2965-2968, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36308291

RESUMO

Mitracarpus hirtus (L.) DC. is a weed plant commonly used for the treatment of eczema. The potential of the plant to treat cancer has not been emphasized, hence the need to explore its anticancer potential. M. hirtus was extracted and subjected to petition with solvents of increasing polarity. Its cytotoxic potential was evaluated against MCF-7, HepG2, and HeLa cells using the Neutral red assay and further verified through morphological assessment and DNA fragmentation assay. Crude chloroform fraction (CCF) displayed a cytotoxic effect on all the cell lines with low IC50 concentrations ranging from 11-17.87 µg/mL. Morphological assessment of MCF-7 exposed to CCF indicates apoptotic cell death and is further confirmed by its DNA fragmentation. Our data suggest that M. hirtus is a potential source for mining anticancer agents.

8.
Chem Biol Drug Des ; 101(5): 1138-1150, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-35191201

RESUMO

The global burden of colorectal cancer (CRC) is increasing annually. CRC could develop from genetic and phenotypic factors involving changes in gene expression. Incredibly, the human genome transcribes into non-coding RNAs, among which long non-coding RNAs (lncRNAs) signify the most crucial part of the transcriptome in multicellular organisms. lncRNAs affect gene expression at multiple levels, from transcription to protein localization and stability. Recent studies have implicated lncRNA small nucleolar RNA host gene 15 (SNHG15) in cancers occurrence and progression. Previously, an indication suggests SNHG15 overexpression triggers proliferation, metastasis, and impedes apoptosis in CRC. Further, through its activity of binding micro-RNAs, lncRNA SNHG15 modulates genes associated with CRC progression and promotes CRC resistance to chemotherapeutic drugs. Here, we reviewed recent findings on the various mechanisms and roles of lncRNA SNHG15 implicated in CRC tumorigenesis. We further highlight how SNHG15 plays a vital role in regulating critical pathways linked to the development and progression of CRC. Finally, we highlight how SNHG15 can be modulated for CRC treatments and the various therapeutic strategies to be implored when targeting SNHG15 in the context of CRC treatments. Findings from these studies present SNHG15 as a potential therapeutic target for preventing and treating CRC.


Assuntos
Neoplasias Colorretais , MicroRNAs , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proliferação de Células/genética , Linhagem Celular Tumoral , MicroRNAs/genética , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Regulação Neoplásica da Expressão Gênica
9.
Eur J Integr Med ; 49: 102094, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36573184

RESUMO

Introduction: For decades, viral diseases have been treated using medicinal plants and herbal practices in the northern part of Nigeria. Though scarcely investigated, these medicinal plants could serve as potential sources for novel antiviral drugs against emerging and remerging viral diseases. Therefore, this study is aimed at investigating the medicinal practices and plants used to treat emerging and re-emerging viral diseases including hepatitis, poliomyelitis, monkeypox, smallpox, yellow fever, Lassa fever, meningitis, and COVID-19 in some northern states; Katsina, Kebbi, Kwara and Sokoto states. Method: Administered questionnaires and oral interviews were used to collect information on medicinal plants, method of preparation of herbal formulations, diagnosis, and treatment of viral diseases. Medicinal plants were collected, botanically identified, and assigned voucher numbers. The plant names were verified using www.theplantlist.org, www.worldfloraonline.org and the international plant names index. Result: A total of 280 participating herbal medicine practitioners (HMPs) mentioned 131 plants belonging to 65 families. Plant parts such as roots, bark, leaf, seed, and fruit were prepared as a decoction, concoction, infusion, or ointment for oral and topical treatment of viral diseases. Moringa oleifera (75.3%), Elaeis guineensis Jacq. (80%), and Acacia nilotica (70%) were the most frequently mentioned plants in Kebbi, Kwara and Sokoto states, respectively. Conclusion: The study revealed scarcely investigated and uninvestigated medicinal plants used to treat hepatitis, poliomyelitis, monkeypox, smallpox, yellow fever, Lassa fever, meningitis, and COVID-19. Future studies should be conducted to determine the antiviral potency and isolate novel bioactive agents from these plants against viral diseases.

10.
Epigenomics ; 14(11): 711-726, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35473304

RESUMO

Current research on triple-negative breast cancer (TNBC) has resulted in delineation into the quadruple-negative breast cancer (QNBC) subgroup. Epigenetic modifications such as DNA methylation, histone posttranslational modifications and associated changes in chromatin architecture have been implicated in breast cancer pathogenesis. Herein, the authors highlight genes with observed epigenetic modifications that are associated with more aggressive TNBC/QNBC pathogenesis and possible interventions. Advanced literature searches were done on PubMed/MEDLINE, Scopus and Google Scholar. The results suggest that nine epigenetically altered genes/differentially expressed proteins in addition to the downregulated androgen receptor are associated with TNBC aggressiveness and could be implicated in the TNBC to QNBC transition. Thus, restoring the normal expression of these genes via epigenetic reprogramming could be therapeutically beneficial to TNBC and QNBC patients.


When the androgen hormone receptor becomes inactive in triple-negative breast cancer (TNBC) patients, it results in another subtype of breast cancer called quadruple-negative breast cancer (QNBC). This is because these patients already lack the biological activities of three other important hormone receptors. The functions of these receptors are targeted by some drugs used in the management of breast cancers, so the lack of these receptors in TNBC and QNBC patients is thought to be linked with poor response to treatment. Some epigenetic modifications are involved in a more severe disease that is very difficult to control in TNBC patients and could facilitate its transition to the more aggressive QNBC subtype. Treatment response could be improved by restoring the normal function of the altered genes by reversing the observed epigenetic alterations.


Assuntos
Neoplasias de Mama Triplo Negativas , Metilação de DNA , Epigênese Genética , Epigenômica , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias de Mama Triplo Negativas/patologia
11.
Toxicol Rep ; 9: 366-372, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35284243

RESUMO

Vernonia glaberrima leaves are traditionally used to alleviate bodily pain, skin cancer, and other skin-related disorders. The purpose of the study was to investigate the acute and sub-acute toxicity of 5-methylcoumarin-4ß-glucoside, a promising chemotherapeutic agent against colon cancer isolated from the leaves of Vernonia glaberrima. 5-methylcoumarin-4ß-glucoside was isolated from the methanol leaf extract of Vernonia glaberrima following a previously described method. The acute toxicity study involved a two-phase 24 h observation for signs of mortality and toxicity following single oral dose administration of the isolated compound. For the sub-acute study, four groups of mice, averagely aged eight weeks, were administered graded doses of the compound (250, 500 and 1000 mg/kg) or vehicle for 28 days. On the 29th day, the mice were fasted, anesthetized, euthanized, then their blood and tissues were harvested for hematological, biochemical and histopathological evaluations. There were no signs of mortality or moribund status with an increasing dose of up to 5000 mg/kg over a 24 h period in the acute study. Also, there was no evidence of toxicity on the biochemical or hematopoietic systems in the sub-acute study (p < 0.05). At the dose of 1000 mg/kg, the mice showed some distorted histology with no corresponding alterations in serum biochemicals. Overall, the results showed that 5-methylcoumarin-4ß-glucoside at dosages up to 500 mg/kg is tolerable in mice.

12.
J Food Biochem ; 46(5): e14079, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35060145

RESUMO

Cytokine storm is a phrase used to refer to an abrupt upsurge in the circulating levels of various pro-inflammatory cytokines, causing increased stimulation and activity of immune cells during disease conditions. The binding of pattern recognition receptors to pathogen-associated molecular patterns during COVID-19 infection recruits response machinery involving the activation of transcription factors and proteins required for a robust immune response by host cells. These immune responses could be influenced by epigenetic modifications as evidenced by significant variations in COVID-19 pathophysiology and response to therapy observed among patients across the globe. Considering that circulating levels of interleukin 1, tumor necrosis factor-α, and interleukin 6 are significantly elevated during cytokine storm in COVID-19 patients, genetic and epigenetic variations in the expression and function of these proteins could enhance our understanding of the disease pathogenesis. Treatment options that repress the transcription of specific cytokine genes during COVID-19 infection could serve as possible targets to counteract cytokine storm in COVID-19. Therefore, the present article reviews the roles of cytokines and associated genes in the COVID-19 cytokine storm, identifies epigenetic modifications associated with the disease progression, and possible ameliorative effects of some vitamins and minerals obtained as epigenetic modifiers for the control of cytokine storm and disease severity in COVID-19 patients. PRACTICAL APPLICATIONS: COVID-19 causes mortality and morbidity that adversely affect global economies. Despite a global vaccination campaign, side effects associated with vaccination, misconceptions, and a number of other factors have affected the expected successes. Cytokine storm in COVID-19 patients contributes to the disease pathogenesis and response to therapy. Epigenetic variations in the expression of various cytokines could be implicated in the different outcomes observed in COVID-19 patients. Certain vitamins and minerals have been shown to interfere with the expression and activity of cytokines implicated in cytokine storm, thereby counteracting observed pathologies. This review examines cytokines implicated in cytokine storm in COVID-19, epigenetic modifications that contribute to increased expression of identified cytokines, specific foods rich in the identified vitamins and minerals, and suggests their possible ameliorative benefits. The article will be beneficial to both scientists and the general public who are interested in the role of vitamins and minerals in ameliorating COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , Síndrome da Liberação de Citocina , COVID-19/genética , Síndrome da Liberação de Citocina/tratamento farmacológico , Síndrome da Liberação de Citocina/genética , Citocinas/genética , Epigênese Genética , Humanos , Minerais , SARS-CoV-2 , Vitamina A , Vitaminas
13.
J Biomol Struct Dyn ; 40(3): 1347-1362, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-32964804

RESUMO

Cancer is a rapidly growing non-communicable disease worldwide that is responsible for high mortality rates, which account for 9.6 million death in 2018. Dihydroartemisinin (DHA) is an active metabolite of artemisinin, an active principle present in the Chinese medicinal plant Artemisia annua used for malaria treatment. Dihydroartemisinin possesses remarkable and selective anticancer properties however the underlying mechanism of the antitumor effects of DHA from the structural point of view is still not yet elucidated. In the present study, we employed molecular docking simulation techniques using Autodock suits to access the binding properties of dihydroartemisinin to multiple protein targets implicated in cancer pathogenesis. Its potential targets with comprehensive pharmacophore were predicted using a PharmMapper database. The co-crystallised structures of the protein were obtained from a Protein Data Bank and prepared for molecular docking simulation. Out of the 24 selected protein targets, DHA has shown about 29% excellent binding to the targets compared to their co-crystallised ligand. Additionally, 75% of the targets identified for dihydroartemisinin binding are protein kinases, and 25% are non-protein kinases. Hydroxyl functional group of dihydroartemisinin contributed to 58.5% of the total hydrogen interactions, while pyran (12.2%), endoperoxide (9.8%), and oxepane (19.5%) contributed to the remaining hydrogen bonding. The present findings have elucidated the possible antitumor properties of dihydroartemisinin through the structural-based virtual studies, which provides a lead to a safe and effective anticancer agent useful for cancer therapy.Communicated by Ramaswamy H. Sarma.


Assuntos
Artemisininas , Neoplasias , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Detecção Precoce de Câncer , Humanos , Simulação de Acoplamento Molecular , Neoplasias/tratamento farmacológico
14.
Planta Med ; 88(8): 650-663, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34000739

RESUMO

Parental dietary choices and/or nutritional interventions in the offspring are critical to early life development, especially during the periods of active developmental plasticity in the offspring. Exposure to a high-fructose, high-fat diet during the fetal or neonatal period predisposes the affected individuals to the development of one or more features of metabolic syndrome, such as dyslipidemia, insulin resistance, diabetes, and associated cardiovascular diseases, later in their life. Owing to the increasing global prevalence of metabolic syndrome and multiple side effects that accompany conventional medicines, much attention is directed towards medicinal plants and phytochemicals as alternative interventions. Several studies have investigated the potential of natural agents to prevent programmed metabolic syndrome. This present review, therefore, highlights an inextricable relationship between the administration of medicinal plants or phytochemicals during the intrauterine or neonatal period, and the prevention of metabolic dysfunction in adulthood, while exploring the mechanisms by which they exert such an effect. The review also identifies plant products as a novel approach to the prevention and management of metabolic syndrome.


Assuntos
Produtos Biológicos , Resistência à Insulina , Síndrome Metabólica , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Dieta Hiperlipídica/efeitos adversos , Frutose/toxicidade , Síndrome Metabólica/prevenção & controle
15.
Br J Nutr ; 128(5): 802-827, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34551828

RESUMO

Epidemiologically, metabolic disorders have garnered much attention, perhaps due to the predominance of obesity. The early postnatal life represents a critical period for programming multifactorial metabolic disorders of adult life. Though altricial rodents are prime subjects for investigating neonatal programming, there is still no sufficiently generalised literature on their usage and methodology. This review focuses on establishing five approach-based models of neonatal rodents adopted for studying metabolic phenotypes. Here, some modelled interventions that currently exist to avoid or prevent metabolic disorders are also highlighted. We also bring forth recommendations, guidelines and considerations to aid research on neonatal programming. It is hoped that this provides a background to researchers focused on the aetiology, mechanisms, prevention and treatment of metabolic disorders.


Assuntos
Doenças Metabólicas , Roedores , Animais , Obesidade/etiologia
16.
Pharm Biol ; 59(1): 955-963, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34283002

RESUMO

CONTEXT: Pseudocedrela kotschyi (Schweinf) Harms (Meliaceae) is an important medicinal plant found in tropical and subtropical countries of Africa. Traditionally, P. kotschyi is used in the treatment of various diseases including diabetes, malaria, abdominal pain and diarrhoea. OBJECTIVE: To provide an overview of traditional medicinal claims, pharmacological properties, and phytochemical principles of P. kotschyi as a basis for its clinical applications and further research and development of new drugs. METHODS: Through interpreting already published scientific manuscripts retrieved from different scientific search engines, namely, Medline, PubMed, EMBASE, Science Direct and Google scholar databases, an up-to-date review on the medicinal potentials of P. kotschyi from inception until September, 2020 was compiled. 'Pseudocedrela kotschyi', 'traditional uses', 'pharmacological properties' and 'chemical constituents' were used as search words. RESULTS: At present, more than 30 chemical constituents have been isolated and identified from the root and stem bark of P. kotschyi, among which limonoids and triterpenes are the main active constituents. Based on prior research, P. kotschyi has been reported to possess anti-inflammatory, analgesic, antipyretic, anthelminthic, antimalaria, anti-leishmaniasis, anti-trypanosomiasis, hepatoprotective, antioxidant, antidiabetic, antidiarrheal, antimicrobial, and anticancer effects. CONCLUSIONS: P. kotschyi is reported to be effective in treating a variety of diseases. Current phytochemical and pharmacological studies mainly focus on antimalaria, anti-leishmaniasis, anti-trypanosomiasis and anticancer potential of the root and stem bark of P. kotschyi. Although experimental data support the beneficial medicinal properties of this plant, there is still a paucity of information on its toxicity profile. Nonetheless, this review provides the basis for future research work.


Assuntos
Meliaceae/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/uso terapêutico , Etnofarmacologia , Medicina Tradicional , Fitoterapia , Extratos Vegetais/efeitos adversos , Plantas Medicinais
17.
Biochem Pharmacol ; 190: 114657, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34144008

RESUMO

Cancer metastasis research has emerged in recent years as one of the most important topics of debate in the discovery and development of novel anticancer therapies. Colorectal cancer (CRC), the third most common cancer worldwide, has a high mortality rate due to recurrence and distant metastasis to the liver. Several non-coding RNAs (ncRNAs) have been linked to metastatic CRC (mCRC), including the long non-coding RNA (lncRNA) Metastasis-Associated Lung-Adenocarcinoma Transcript 1 (MALAT1). MALAT1 is an RNA that has been linked to tumor cell proliferation, progression, epithelial-mesenchymal transition (EMT), cell migration and invasion, metastasis, and survival in mammalian species. Previously, there was no convincing evidence linking MALAT1 to mCRC. Studies have shown that MALAT1 functions as a competitive endogenous RNA (ceRNA) with microRNAs (miRNAs) and interacts directly with oncogenes and proteins. This RNA also activates several signaling pathways, including Wnt/ß-catenin, PI3K/Akt/mTOR, and EMT. Meanwhile, standard chemotherapy and immunotherapy are the current treatment options for mCRC patients. However, evidence-based studies have recently demonstrated that inhibiting the MALAT1 RNA transcript can be considered as a treatment option for mCRC, highlighting the need to investigate its roles as a therapeutic target in mCRC. Thus, in this review, we looked at studies that linked MALAT1 to multiple signaling pathways implicated in mCRC, as well as its potential as a therapeutic target for the treatment of mCRC.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , RNA Longo não Codificante/metabolismo , Antineoplásicos/uso terapêutico , Humanos , RNA Longo não Codificante/genética
18.
Front Pharmacol ; 12: 629935, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34012391

RESUMO

The 2019 coronavirus disease (COVID-19) is a potentially fatal multisystemic infection caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Currently, viable therapeutic options that are cost effective, safe and readily available are desired, but lacking. Nevertheless, the pandemic is noticeably of lesser burden in African and Asian regions, where the use of traditional herbs predominates, with such relationship warranting a closer look at ethnomedicine. From a molecular viewpoint, the interaction of SARS-CoV-2 with angiotensin converting enzyme 2 (ACE2) is the crucial first phase of COVID-19 pathogenesis. Here, we review plants with medicinal properties which may be implicated in mitigation of viral invasion either via direct or indirect modulation of ACE2 activity to ameliorate COVID-19. Selected ethnomedicinal plants containing bioactive compounds which may prevent and mitigate the fusion and entry of the SARS-CoV-2 by modulating ACE2-associated up and downstream events are highlighted. Through further experimentation, these plants could be supported for ethnobotanical use and the phytomedicinal ligands could be potentially developed into single or combined preventive therapeutics for COVID-19. This will benefit researchers actively looking for solutions from plant bioresources and help lessen the burden of COVID-19 across the globe.

19.
Life (Basel) ; 11(3)2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33652690

RESUMO

More than half a century ago, zinc was established as an essential micronutrient for normal human physiology. In silico data suggest that about 10% of the human proteome potentially binds zinc. Many proteins with zinc-binding domains (ZBDs) are involved in epigenetic modifications such as DNA methylation and histone modifications, which regulate transcription in physiological and pathological conditions. Zinc metalloproteins in epigenetics are mainly zinc metalloenzymes and zinc finger proteins (ZFPs), which are classified into writers, erasers, readers, editors, and feeders. Altogether, these classes of proteins engage in crosstalk that fundamentally maintains the epigenome's modus operandi. Changes in the expression or function of these proteins induced by zinc deficiency or loss of function mutations in their ZBDs may lead to aberrant epigenetic reprogramming, which may worsen the risk of non-communicable chronic diseases. This review attempts to address zinc's role and its proteins in natural epigenetic programming and artificial reprogramming and briefly discusses how the ZBDs in these proteins interact with the chromatin.

20.
J Trace Elem Med Biol ; 65: 126731, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33610057

RESUMO

BACKGROUND: Zinc deficiency is associated with adverse effects on maternal health and pregnancy outcomes. These consequences have been reported over the years from zinc supplementation trials and observational studies whereby outcomes of maternal, foetal and infant health were measured. Owing to the importance of zinc in the functions of epigenetic enzymes, pre-clinical studies have shown that its deficiency could disrupt biological activities that involve epigenetic mechanisms in offspring. Thus, this review assessed the link between epigenetics and the effects of maternal zinc deficiency on the offspring's health in animal studies. METHODS: Research articles were retrieved without date restriction from PubMed, Web of Science, ScienceDirect, and Google Scholar databases, as well as reference lists of relevant articles. The search terms used were "zinc deficiency", "maternal zinc deficiency", "epigenetics", and "offspring." Six studies met the eligibility criteria and were reviewed. RESULTS: All the eligible studies reported maternal zinc deficiency and observed changes in epigenetic markers on the progeny during prenatal and postnatal stages of development. The main epigenetic markers reported were global and gene specific methylation and/ or acetylation. The epigenetic changes led to mortality, disruption in development, and risk of later life diseases. CONCLUSION: Maternal zinc deficiency is associated with epigenetic modifications in offspring, which induce pathologies and increase the risk of later life diseases. More research and insight into the epigenetic mechanisms could spring up new approaches to combat the associated disease conditions.


Assuntos
Epigênese Genética/genética , Desenvolvimento Fetal/genética , Zinco/metabolismo , Animais , Humanos , Zinco/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA